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The physical meanings of the cap aspect ratio (R) and transition surface parameter (α) of the modified Drucker-
Prager cap (MDPC) model have been uncovered in relation to the deviator stress curves of a particulate material
in conventional triaxial testing by simulating the curves using varying R and α based on finite element analysis. R
controls the rate of the stress rise with the increase of the strain; the smaller the R, the faster the rise of the de-
viator stress. This phenomenonoccurs because, in thep-q plane (p is themean stress and q is theMises equivalent
stress), the cap with a smaller R needs to move a shorter distance on the p axis to maintain the current stress
state: a smaller volumetric plastic strain is required according to the hardening law. Rdoes not influence themax-
imumvalue of the deviator stress curve. As for the influence ofα, it artificially lowers the true failure surface by an
amount that is proportional to α so that a fictitious ultimate failure state is achieved. Therefore, it is desirable to
set α as small as possible unless the numerical analysis using the MDPCmodel does not produce a converged so-
lution. An analytical expression to calculate the maximum deviator stress that can be predicted by the MDPC
model is provided in terms of α.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In particulate materials, shear properties are the most important
properties, while in the bulkmetals and bulk ceramics, tensile and com-
pressive properties, respectively, are the most important. Further, the
particulate materials exhibit hydrostatic pressure-dependent yielding
behavior. In order to describe such behavior of particulatematerials pre-
cisely, a rigorous constitutive model together with its accurate parame-
ters is a prerequisite. In this regard, the modified Drucker-Prager cap
(MDPC) model has been employed extensively as the constitutive
model [1–58] of the particulate materials in various engineering areas,
especially in describing their compaction behavior. This model demon-
strates a reliable prediction capability, especially whenmonotonic load-
ing is involved. The input information for theMDPCmodel includes the
parameters describing elastic behavior, the parameters defining the
shear failure surface, the cap parameters (the cap aspect ratio, R, and
the transition surface parameter, α) defining the shapes of the cap and
the transition surface, and the hydrostatic pressure vs. the inelastic vol-
umetric strain relationship governing themovement of the cap. Because
many parameters are involved in theMDPC model, researchers investi-
gated the sensitivity of themodel parameters on the prediction result of
82 2 979 7032.
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themodel via a statistical or a parametric approach [56–58]. They found
that the influences of the cap parameters (R and α) are the most signif-
icant among the material parameters of the MDPC model.

All of the required material parameters in the MDPC model, except
the cap parameters, have straight-forward physical meanings as men-
tioned in Section 2, and they are determined suitably via experiment.
It is difficult to assign cap parameters to any explicit properties of partic-
ulate materials and the experimental determination process is themost
complicated among the model parameters. In the experimental deter-
mination process, the conventional triaxial test [59] is generally used
to measure the deviator stress curves as functions of axial and radial
strains at varying confinement pressures. Then, several series of iso-
plastic-volumetric-strain data points are displayed in the meridional
plane [35–37,60], from which R and α values are determined by non-
linear curve fitting. Thus, the physical meanings of the determined cap
parameters are fairly implicit. The parameter α is especially so because
it was introduced in the MDPC model in order to ensure the stability
in the numerical implementation.

Although the direct correlation of the cap parameters to the proper-
ties of particulatematerials is difficult to establish due to the implicit na-
ture of the parameters, if we investigate their roles in producing the
deviator stress curves via a systematic simulation, their physical inter-
pretations in relation to the important deviator stress curve may be
found. Although, as mentioned, there has been some studies on the
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sensitivity of the cap parameters, they were carried out from the view-
point of achieving thefinal density of the powder compact [56,57] or the
axial stress [58], all of which are based on statistical analysis or on the
range of the output of the MDPC model. Thus, one can hardly draw
out the physics-based information on the roles of the cap parameters.
Here we systematically simulate the deviator stress curves of the con-
ventional triaxial test using varying cap parameters and explain why
the observed influences of the parameters on the deviator stress curve
are manifested based on the principle of theMDPCmodel. In particular,
this study provides an analytical expression to calculate the maximum
deviator stress as a function of one of the cap parameters, α.

2. Modified Drucker-Prager cap model

The modified Drucker-Prager cap (MDPC)model describes the yield
surfaces in the p-q plane, where p is the mean stress (pressure) and q is
the Mises-equivalent shear stress. Fig. 1 illustrates the model, which is
adapted from the original reference [61] for the MDPC model. For the
cylindrical specimen of the conventional triaxial test, q and p are given
by

q ¼ σa−σ r ¼
ffiffiffiffiffiffiffiffiffiffi
3 J2D

p
ð1Þ

p ¼ σa þ 2σ r

3
¼ J1

3
ð2Þ

where σa and σr are the axial and radial stresses, respectively. q is the
deviator stress in the conventional triaxial test.

As illustrated in Fig. 1, there are three surfaces in the MDPC model:
shear failure surface, cap, and the transition surface. This model adopts
the Drucker-Prager shear failure surface [62], which reflects the pres-
sure dependency of the yield surface:

f p; qð Þ ¼ q−p tan β−d ¼ 0 ð3Þ

where tanβ is the slope of the shear failure surface and d is the intercept
of the q axis. β has the physical meaning of the internal friction angle of
the particles. It is determined by the slope of the shear stress line in the
shear stress-pressure domain of the failure surface and reflects the de-
gree of interlocking and surface roughness of the particles. d is called
the cohesion intercept which is the shear strength when the applied
pressure is zero; it is the apparent cohesive strength of the particulate
material itself when no external pressure is applied.
Fig. 1. Yield surfaces of the modified Drucker-Prager cap (MDPC) model in p–q plane.
Adapted from the original reference [61] of the MDPC model.
The MDPC model employs a smooth transition surface between the
shear failure surface and the cap in order to eliminate singularities in
numerical implementation of the model, especially when the stress
state moves from the cap surface to the failure surface. The transition
surface is described by a small number α as follows [61]:

f p; q; εpv
� � ¼ p−pað Þ2 þ q− 1−α= cos βð Þb½ �2−α2b2 ¼ 0 ð4Þ

where pa is the center of the cap on the hydrostatic axis, and α is the pa-
rameter related to the radius of the transition surface, as will be seen
later.

The cap yield surface in the MDPC model is given by [61]:

f p; q; εpv
� � ¼ p−pað Þ2 þ Rq

1þ α−α= cos βð Þ
� �2

−R2b2 ¼ 0 ð5Þ

where εvp is the plastic strain of the specimen that is determined by the
inelastic (residual) strain when the specimen is unloaded from the hy-
drostatic pressure value of pb, which is the cap position (intersection)
on the hydrostatic pressure axis. R (=a/b) is the ratio of the horizontal
span of the cap on the hydrostatic axis to the original cap height (when
the transition surface does not exist) and is called the cap aspect ratio.
Since α controls not only the transition surface (Eq. (4)) but also the
cap surface as seen in Eq. (5), α is called a cap parameter in this paper
together with R that controls only the cap surface.

In the numerical implementation of the MDPC model, the direction
of the plastic strain increment is normal to the plastic flow potential
(flow rule). When the stress state is on the cap surface, the plastic
flow potential function is identical to that of the cap surface (associated
flow rule). On the shear failure surface and the transition surface, an el-
liptical flow potential function is used for both surfaces, which is differ-
ent from the two yield surfaces (non-associated flow rule) [61]:

g p; q; εpv
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−pað Þ tan β½ �2 þ q= 1þ α−α= cos βð Þ½ �2

q
ð6Þ

Explaining the operation principle of theMDPCmodel, the specimen
behaves elastically when the stress state of the specimen is located in
the volume surrounded by three surfaces. When the stress state of the
specimen reaches the shear failure surface during the loading, the spec-
imen fails by the shear action with no further change in shear stress or
volume. The position of the cap (pb) on the p axis is controlled by the hy-
drostatic pressure vs. inelastic volumetric strain relation (hardening
law). Thus, the cap represents a locus of points with the same volumet-
ric inelastic strain. When the stress state reaches the cap, it expands to
define a new yield surface according to the hardening law, which allows
additional plastic deformation after the yielding of the particulatemate-
rials (work hardening) prior to reaching the ultimate failure state de-
fined by the failure surface. The stress state is on the surface of the
moving cap during the plastic deformation because the stress state can-
not be located beyond the yield surface. The moving cap also accounts
for the plastic deformation under a pure hydrostatic loading. When
the stress state reaches the failure surface that is located within the
cap, the cap contracts toward the stress state on the failure surface.
Then, the position of pb decreases, whichmeans, according to the hard-
ening law, a decrease of the inelastic volume strain (i.e., the dilation of
the particulate materials). The dilation ends when the contracting cap
reaches the stress state on the failure surface.

In this study, we discuss all the terms (including material parame-
ters) in the p–q plane following the definitions in the original reference
[61] of the MDPC model. A positive sign is assigned to the compression.

3. Numerical analysis

For the numerical analysis of the constitutive behavior of the speci-
men in conventional triaxial test, a single cuboidal element (an eight
node linear brick element) with a 25 × 25 × 25 mm size was used



Table 1
Theparameter set of theMDPCmodel (in the q-pplane) used in this study. The cap param-
eters (R and α) were varied.

d (kPa) β (o) E (MPa) v Hardening law (kPa)
(x = εvin)

46.930 56.518 80 0.35 p = 783, 694x2 + 4, 302.8x + 47.381
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(Fig. 2). The nodes in the x-y plane were not allowed to move in the z
direction (The x-y plane is the bottom surface of the cuboidal specimen
and is the support plane for the specimen.). The movement of nodes in
the y-z plane was fixed in the x direction and the nodes in the z-x plane
were also the case in the y direction.

To simulate the hydrostatic loading stage in the conventional triaxial
test, the same magnitude of pressure was applied to three visible sur-
faces of the cuboidal model shown in Fig. 2. For the subsequent shear
loading stage, the z-displacement of nodes at the top surface of the
model was controlled to achieve the shear state of the specimen.

The parameter set of theMDPC model used in this study (except for
the cap parameters) is summarized in Table 1. According to Reference
[52], the model parameters used in this study (Table 1 and the R value
of 0.404) fit the triaxial deviator stress curves of a soil compact [63] at
varying confinement pressures; conventional triaxial testing has been
carried out most extensively for soils compared with any other particu-
latematerials. In the numerical implementation of theMDPCmodel, the
initial cap yield surface position on the hydrostatic pressure axis when
the analysis begins is defined by the initial inelastic volume strain,
εvin(0). It is the parameter indicating the degree of the initial compaction
of the specimen. As the initial cap position increases, the pressure re-
quired to further compress the material increases (The required pres-
sure is determined by the hardening law). In this study, εvin(0) was set
to zero, which means that the specimen was initially consolidated to
47.381 kPa (See table 1) before starting the conventional triaxial test;
the required pressure to initiate the isotopic (hydrostatic) plastic defor-
mation is set to this pressure.
4. Results and discussion

4.1. Effect of R on the deviator stress curve

The deviator stress (q) curves of the conventional triaxial test were
simulated at varying confinement pressures based on the MDPC
model using varying values of R. Alphawas set to zero at all times to un-
cover the pure influence of R. Two examples of the simulated shear
stress curves (when R = 0.404 and 0.289) are shown in Fig. 3(a). The
R values of 0.404 and 0.289 in the p-q (p−

ffiffiffiffiffiffiffiffiffiffi
3 J2D

p
) plane correspond

to the R values of 0.7 and 0.5 in the p−
ffiffiffiffiffiffiffi
J2D

p
plane. When the R value

is smaller (0.289), the deviator stress rises faster with the strain at all
of the investigated confinement pressures. As the axial strain increases
sufficiently, however, there is no difference in the deviator stress re-
gardless of the R value. Using the curves at 310 kPa shown in Fig. 3(a),
the relative difference of q (Δq/q) was quantified and the result is
shown in Fig. 3(b). As seen in Fig. 3(b), the relative difference of q is con-
siderable (as high as approximately 0.17) when ΔR/R is -0.285 (=
(0.289-0.404)/0.404).
Fig. 2. Schematic illustration of the model for the finite element analysis.
Comparing the load paths in the p–q domain for the two different
simulation cases with different R values when α = 0 (Fig. 4), there is
no difference in the load path. Both cases reach the shear failure surface
with a theoretical slope of 3 [64] during the shear loading stage.We also
checked the influence ofR on the deviator stress curve at nonzero values
of α (not shown) and found that (1) a smaller R resulted in a faster rise
of the deviator stress curve and (2) the maximum deviator stress was
not influenced by R if the strain increased sufficiently (However, the
maximum shear stress did not reach the failure surface when α was
nonzero. This issue is treated in the next subsection.).

In order to understand the reason a reduced R value results in a
faster rise of the deviator stress curve (and vice versa for an increased
R), refer to Fig. 5, which compares the cap with a large R and a small
R. In the hydrostatic loading stage of the conventional triaxial test, the
stress state of the specimen moves from the origin to point pb⁎. In this
stage, the current stress state lies on the pressure axis. Because the cur-
rent stress state during plastic deformation is always on the cap, the
Fig. 3. (a) Curves of the deviator stress q at varying confinement pressures as a function of
axial strain during the shear loading stage of the conventional triaxial test (α=0). Arrows
indicate the direction of the curve shift at each confinement pressure as R decreases from
0.404 (solid curves) to 0.289 (dashed curves). (b) Plot for Δq/q.

Image of Fig. 2
Image of Fig. 3


Fig. 4. Simulated load paths of the specimen at varying confinement pressures (α = 0).
The two simulated cases for R = 0.289 and 0.404 coincide.
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current stress state is the intersection point between the cap and the
pressure axis; the cap position (the intersection point) is the current stress
state. Meanwhile the current stress state lies in the pressure axis, the cap
position is the same for any capswith different R values, because, what-
ever R value the cap has, the position of any caps (intersection point)
should describe the current stress state that lies in the pressure axis.
An example is illustrated in Fig. 5 by dashed capswith different R values
which are located at the same cap position (pb⁎).

As the shear loading stage starts in conventional triaxial testing, the
current stress state offsets from the pressure axis (from point pb⁎) and
moves along the load path with a slope of 3. At the beginning of the
shear loading stage, as mentioned, the initial cap position is at pb⁎ re-
gardless of the magnitude of R. Now consider a current (p, q) state of
the specimen during the shear loading stage (Fig. 5). The current (p,
q) state (1) should follow the path with a slope of 3 and (2) is always
on the cap because the stress state cannot be located outside of the
yield surface. Therefore, the evolved shape of a large cap and that of a
small cap at the current state (p, q) should be like the solid curves illus-
trated in Fig. 5. In this current stress state (p, q), the cap with a small R
has moved out a shorter distance on the hydrostatic axis (to pb

S) than
the cap with a large R has done (pbL). This finding means that a smaller
plastic volumetric strain (εv) has been evolved for the cap with the
smaller R according to the hardening law. The evolution of a smaller εv
Fig. 5. Schematic illustration of the caps with two different R values at the current stress
state (p, q) when α is zero.
at the current (p, q) state means the evolution of a smaller εa at the cur-
rent values of p and q (=3p), as illustrated in Fig. 6. In this figure, for a
given value of q (current stress state), a smaller volumetric strain (a
smaller axial strain) is evolved when R is smaller (0.289), which indi-
cates that a smaller R value results in a faster rise of q in the q-εa domain
(Fig. 3).

In Fig. 6, a given q value is achieved at a smaller εv (a smaller εa)
when R is small. However, the same q value is certainly achieved later
(at a larger εv and εa) when R is large. The only thing that matters for
a larger R to achieve the ultimate (maximum) shear stress level is that
the cap needs to move out further according to the hardening law
(Fig. 5). Thus, the deviator stress q is the same eventually when the
strain increases sufficiently regardless of the R value, which explains
why R does not influence the maximum shear stress level that can be
achieved in the specimen.

4.2. Effect of α on the deviator stress curve

The deviator stress curves of the conventional triaxial test were sim-
ulated at varying confinement pressures based on the MDPC model
using varying values of α. R was set to 0.404 at all times to uncover
the pure influence of α. Two examples of the simulated shear stress
curves (α=0 and 0.1) are shown in Fig. 7. As seen in this figure, a larger
α (solid curves) results in a diminished q value nomatter howmuch the
strain increases; the curve shifts downward as α increases. We also
checked the influence of α on the deviator stress curve at other values
of R (not shown) and found the same result. When α has a non zero
value (e.g., 0.1), the investigation of the load path (Fig. 8) reveals that
the stress state of the specimen does not reach the failure surface (It
reaches the failure surface when α = 0 regardless of the value of R as
seen in Fig. 4.). The final q values in Fig. 8 (the points at the end of
each load path) are the same as the maximum q values of the corre-
sponding solid curves (α = 0.1) in Fig. 7. As the loading progresses (as
the axial strain increases), the value of q (Fig. 7) as well as that of p
(=1/3q) is saturated, thereby resulting in an asymptotic approach of
the current stress state toward the final (p, q) point located at the end
of each load path in Fig. 8.

In order to understand why an increased α value results in a dimin-
ished maximum deviator stress (Figs. 7 and 8), we revisited the MDPC
model shown in Fig. 1 (adapted from the original reference of the
MPDPC model) and interpreted the model as illustrated in Fig. 9. In
Fig. 9(a), the transition surface (in red) is a right circle with the radius
r (=αb) where α is the ratio of the radius of the transition surface (r)
Fig. 6. The profiles of axial (εa), radial (εr= εx= εy), and volumetric (εv= εa+ 2εr) strains
at the confinement pressure of 310 kPa as functions of q (α= 0). The arrows indicate the
decrease of the respective strains as R decreases from 0.404 (solid curves) to 0.289
(dashed curves). Because the signs of εa and εr are different, the change in εv is less signif-
icant than that of εa or εr.

Image of Fig. 4
Image of Fig. 5
Image of Fig. 6


Fig. 7. Curves of the deviator stress q (=σa- σr) at varying confinement pressures as a
function of axial strain during the shear loading stage of the conventional triaxial test
(R= 0.404). Arrows indicate the amount of the curve shift at each confinement pressure
between the α values of 0 (dashed curves) and 0.1 (solid curves).

Fig. 9. Interpretation of the MDPCmodel (a) for a given α and (b) for two different values
of α.
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to the height of the original cap when α is zero: α= r/b (See Appendix
A). The transition surface can be considered to start from the pointm on
the vertical line i-pa toward the shear failure surface (point j): the length
of the arc is αβb (β in radian). Then, the original cap surface is modified
in the MDPC model by squeezing the original cap along the vertical di-
rection until the top of the original cap meets the pointm. (The reason
why we interpret the modified cap surface in this way is provided in
Appendix A.) Then, the decrease of the cap height is proportional to α
as qualitatively seen in Fig. 9(b). The degree of squeeze of the modified
cap surface along the vertical direction is proportional to α: the larger
the α, the larger the degree of the modification (squeezing) of the orig-
inal cap.

As seen in Fig. 9(a), the intersection between the transition surface
and the cap surface (pointm) is themaximumpoint of the two surfaces.
With this finding in mind, refer to Fig. 10 which shows the caps located
at varyingpositions; at the initial state of the loadpath in the shear stage
(noted by superscript o), at the intermediate state (superscript i), and at
the state when the stress state on the load path reaches the maximum
point (superscript m). As the stress state (p, q) follows the load path
with a slope of 3, the position on the cap surface (the current stress
state) moves up along the cap. When the current stress state reaches
point m, the cap cannot move out further because (1) point m is the
maximally allowable q value on the cap and the transition surfaces at
the current volumetric strain (corresponding to pb

m) and (2) any further
Fig. 8. Simulated load paths of the specimen at varying confinement pressures when α is
0.1 (R = 0.404).
progress of the stress state should follow the load pathwith the slope of
3. Therefore, the stress state of the specimen is fixed at the maximum
pointm (pm, qm). This reasoning is consistent with the fact that the pro-
files of the volumetric strain and pressure are saturated with the prog-
ress of the axial displacement (Fig. 11). In Fig. 11, when α increases
from 0 to 0.1, the saturation values of εv (and subsequently p) decrease,
togetherwith the decreased q valuewhenα increases (Fig. 7): The (p, q)
state never reaches the shear failure surface. Although the saturation
values of q’s are α-dependent, once they reach their maximal values,
they vary no longer in spite of the progress of the axial strain; the stress
state in the p-q domain is fixed (pointm in Fig. 10).

When α N0, it can be said that the saturated stress state (where q is
maximum) reaches a new ultimate failure state in that there is no
change in shear stress (Fig. 7) or volume (Fig. 11) [65] in the saturated
stress state. Therefore,α artificially lowers the true (original) failure sur-
face defined by d and tanβ by the amount that is proportional to α so
that a fictitious ultimate failure state is achieved. When α is overly
large, the moving part of the yield surface is the combination of a
large circle (the transition surface) with a significantly squeezed ellipse
(the cap in Fig. 9(b)), which causes the problem of lowering the ulti-
mate failure state excessively. In the framework of the MDPC model,
the shape of locus of the iso-inelastic-volume strain in the p-q domain

Image of Fig. 7
Image of Fig. 8
Image of Fig. 9


Fig. 10. Schematic illustration of the caps located at varying positions; at the initial state of
load path in the shear stage, at the intermediate state, and at the state when the stress
state following the load path reaches the maximum point.

Fig. 12.Definition ofΔq (the difference of themaximumdeviator stress between the cases
of α =0 and α N0) in the p–q domain.
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(the shape of the cap surface) should be described solely by the change
in R because the description of the cap shape by way of setting a non-
zero valued α (α N 0) artificially lowers the yield surface. This finding
suggests that, when we experimentally determine the cap parameters
of a given particulatematerial, it is desirable to obtain the R value by set-
ting the value of α as zero. Recall that α was introduced to the MDPC
model simply to impose a numerical stability. It is not a material
constant.

Ref. [36] experimentally obtained R with an overly large α (α =
0.224 or 2.776). In this reference, the set of R and αwas determined si-
multaneously from the non-linear fitting of all available sets of iso-
inelastic-volume-strain loci. If R was determined by setting the value
of α as zero, the value of R could be determined for each set of the iso-
inelastic-volume-strain locus, which could reveal the evolution of R as
a function of the inelastic volumetric strain.

In numerical analysis, it is desirable to set α as small as possible un-
less the numerical analysis using the MDPC model does not produce a
converged solution. The user of the model may set a non-zero value of
α from the viewpoint of apparently fitting an engineering event. If the
engineering event of interest is simulated successfully with only an
overly large α, it results from the numerical fiction of the model (the
limitation of the model) because α renders the model not to reach the
true failure surface of the material.

We now seek an analytical expression to calculate themaximumde-
viator stress. In Fig. 12, q values of point f (qf) and point m (qm) are
Fig. 11. Change in the volumetric strain and pressure as functions of axial strain for the
confinement pressure of 310 kPa (R = 0.404).
maximum deviator stresses when α = 0 and α N0, respectively. In
Fig. 7, the difference of the maximum deviator stress between the
cases of α =0 and α N0 is noted as Δq. Δq can be defined in the p-q
domain as seen in Fig. 12.

Based on the process shown in Appendix B, qm is expressed as
follows:

qm ¼ 3 zdþ 3cð Þ
3−z tanβ

−3c ð7Þ

where c is the confinement pressure and z is the ratio of the height
(b′) of the modified cap to that (b) of the original cap (See Fig. 9(a)). z
is given as a function of α by

z≡ b0

b
¼ 1þ α− α

cos β
ð8Þ

When z=1 (α=0), Eq. (7) predicts the value of qf (See Fig. 12.). In
this case, Eq. (7) predicts qf values of 408.5, 618.8, and 1039.4 kPa for the
confinement pressures of 103, 172, and 310 kPa, respectively.Whenα is
0.1 (z = 0.919), qm values predicted by Eq. (7) are 346.7, 525.2, and
882.1 kPa, respectively. All of these calculated values by Eq. (7) are iden-
tical to themaximum(saturated) q values numerically obtained in Fig. 7
at respective confinement pressures. From this finding, the validity of
the analytical expression (Eq. (7)) is confirmed.

4.3. Mixed influence of R and α on the deviator stress curve

When we simulated the cases with varied R and α simultaneously
(not shown), the influences of R and α operated independently. Thus,
the individual findings (described in the previous subsections) on the
influence of R and that of α on the shear stress curve are generally ap-
plied for arbitrary sets of R and α. The findings on the influence of R
on the deviator stress of the conventional triaxial test may be applied
to other types of the cap models such as the geologic cap model [66]
and the continuous surface capmodel [66,67]. In the continuous surface
cap model, the shape of the transition surface is different from that of
the MDPC model, while it is noted that there is also a maximum point
in the moving part of the yield surface like the case of the MDPCmodel.

Image of Fig. 11
Image of Fig. 10
Image of Fig. 12


100 H. Shin, J.-B. Kim / Powder Technology 280 (2015) 94–102
5. Conclusion

The physicalmeanings of the cap parameters (the cap aspect ratio, R,
and transition surface parameter,α) of themodifiedDrucker-Prager cap
(MDPC) model have been uncovered in relation to the deviator stress
curves of particulate materials in conventional triaxial testing by simu-
lating the curves using varyingR andα based on thefinite element anal-
ysis. R controls the rate of rise of the deviator stress with the increase of
the strain; the smaller the R, the faster the rise of the deviator stress. This
phenomenon occurs because, in the p–q space, the cap with a smaller R
needs to move a shorter distance on the p axis to maintain the current
stress state: a less plastic volumetric strain is required according to the
hardening law. R does not influence themaximumvalue on the deviator
stress curve of the specimen; the only thing that matters for the larger R
is that the cap needs to move out further (a further plastic volumetric
strain is required) for the specimen to reach the maximum deviator
stress. As for the influence of α, it artificially lowers the true failure sur-
face by the amount that is proportional to α so that a fictitious ultimate
failure state is achieved. Therefore, when we experimentally determine
the cap parameters of a given particulate material, it is desirable to ob-
tain the R value by setting the value of α as zero. In numerical analysis, it
is desirable to set α as small as possible unless the numerical analysis
using theMDPCmodel does not produce a converged solution. If an en-
gineering event of interest is simulated successfully with only an overly
large α, it results from the numerical fiction of themodel (the limitation
of the model) because α renders the model not to reach the true failure
surface of the material. An analytical expression to calculate the maxi-
mum deviator stress is provided in terms of the parameters of α and
the true failure surface. The influence of R and that of α operate inde-
pendently so that the individual findings on the influence of R and
that of α on the deviator stress curve are generally applied for arbitrary
sets of R and α.
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Appendix A

This appendix explains (1) the right-circular nature of the transition
surface and (2) the reason the modified cap (when α N 0) in the modi-
fied Drucker-Prager cap model is interpreted to be squeezed from the
original cap along the vertical direction. In Fig. 9(a), b is the height of
the original cap when α is zero. The height of the modified cap is
noted as b′.

From the consideration of the rectangular triangle Δijo shown in
Fig. 9(a), we find the relation:

k cos β ¼ αb ðA1Þ

Then, the vertical coordinate of point O (qo) is

qo ¼ b−k ¼ b 1− α
cos β

� �
ðA2Þ

If the right circlewith radius r (=αb) is shifted from the origin to the
point O (pa, qo), the function of the circle will be

p−pað Þ2 þ q− 1−α= cos βð Þb½ �2−α2b2 ¼ 0 ðA3Þ

which is identical to the transition surface function of the MDPC model
(Eq. (4)). Thus, the transition surface is a right circle with radius r
(=αb) located at the point O.
The gap between the shear failure surface and the maximally allow-
able q value of the specimen is noted as x (Fig. 9(b)), which means that

b0 ¼ b−x ðA4Þ

The gap x is given by

x ¼ k−αb ¼ αb
1

cos β
−1

� �
ðA5Þ

The height ratio of the modified and original cap (z) is expressed as

z≡ b0

b
¼ b−x

b
¼ 1− x

b
ðA6Þ

By plugging Eq. (A5) into (A6),

z ¼ 1þ α− α
cos β

ðA7Þ

This term (the height ratio of the caps) is found in the cap function
(Eq. (5)) and the flow potential function (Eq. (6)). If we plug Eq. (A7)
into the definition of z, which is b′ = bz,

b0 ¼ b 1þ α− α
cos β

� �
ðA8Þ

If the modified cap were constructed by squeezing the original cap
along the vertical direction to form a new type of ellipse, the following
ellipse relation should hold:

p−pað Þ2
R2b2

þ q2

b02
¼ 1 ðA9Þ

Substituting Eq. (A8) for b′ in Eq. (A9) leads to

p−pað Þ2 þ R2q2

1þ α−α= cos βð Þ2 ¼ R2b2 ðA10Þ

Eq. (A10) is identical to the cap function (Eq. (5)). Thus, themodified
cap (α N0) in theMDPCmodel turns out to be constructed by squeezing
the original cap (α= 0) along the vertical direction by the amount of x
given by Eq. (A5) or by the height ratio of the caps with z (Eq. (A7)).

Appendix B

In order to calculate qf and qm shown in Fig. 12, we first seek pa
m and

pa
f , respectively. Note that, from the knowledge of the slope of the load

path, the load path function is

q ¼ 3 p−cð Þ ðB1Þ

where c is the confinement pressure.
pa
f is obtained by equating the load path function (Eq. (B1) with the

shear failure surface function (Eq. (3)):

p f
a ¼ dþ 3c

3− tanβ
ðB2Þ

Subsequently qf is obtained by substituting Eq. (B2) for Eq. (B1):

q f ¼ 3
dþ 3c

3− tan β
−c

� �
¼ 3 dþ c tan βð Þ

3− tan β
ðB3Þ
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For the expression of qm, asmentioned, pam is first obtained by equat-
ing the load path function (Eq. (B1)) with the cap function (Eq. (5)):

p−pað Þ2 þ R2q2

z2
¼ R2b2 ðB4Þ

By plugging Eq. (B1) into Eq. (B4),

p−pað Þ2 þ 9R2 p−cð Þ2
z2

¼ R2b2 ðB5Þ

When p = pa = pa
m, Eq. (B5) transforms to

9 pma −c
� �2 ¼ z2b2 ðB6Þ

which yields the relation

pma ¼ 1
3
zbþ c ðB7Þ

By noting that b = a/R, and a is given by (d + pa
m tan β)R, Eq. (B7)

transforms to

pma ¼ zdþ 3c
3−z tan β

ðB8Þ

Plugging Eq. (B8) to Eq. (B1) yields qm as

qm ¼ 3 zdþ 3cð Þ
3−z tan β

−3c ðB9Þ

When z=1 (α=0), Eq. (B9) becomes Eq. (B3). From Eqs. (B3) and
(B9), Δq shown in Fig. 12 is expressed as follows:

Δq≡q f−qm ¼ 3 dþ c tan βð Þ
3− tan β

−3 zdþ 3cð Þ
3−z tan β

þ 3c ðB10Þ
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